Sec. 10.1 Composition of Functions

Composition of Functions Defined by Equations: RECALL:

- The function f(g(t)) is said to be a **composition** of f with g.
- The function f(g(t)) is defined by using the output of the function g as the input to f.
- The function f(g(t)) is only defined for values in the domain of g whose g(t) values are in the domain of f.

Ex: If
$$f(x) = 2x + 6$$
 and $g(x) = 3x - 4$, find $f(g(x))$.
 $f(g(x)) = 2(3x-4)+6$
 $= 6x-8+6$
 $f(g(x)) = 6x-2$

Ex: Let
$$p(x) = \sin x + 1$$
 and $q(x) = x^2 - 3$. Find a formula in terms of x for $w(x) = p(p(q(x)))$.

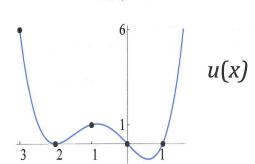
$$P(q(x)) = \sin (x^2 - 3) + 1$$

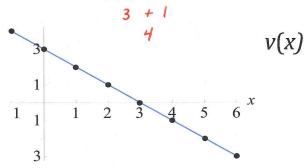
$$P(p(q(x))) = \sin (\sin (x^2 - 3) + 1) + 1$$

Compositions of Functions defined by Tables:

Ex. Complete the table. Assume that f(x) is invertible.

X	f(x)	g(x)	x) $g(f(x))$			
0	2	3	7	2		
1	3	1		3		- g(f()
2	1	2 /		/	4	9(1)
		9(2)=?			*	=> 9
	9(1	g(x) = g(2) = 0 g(2) = 2	2			
	=>	9(2)=2				


Composition of Functions Defined by Graphs:


Ex. Let u and v be two functions defined by the graphs. Evaluate:

(a)
$$v(u(-1))$$

(b)
$$u(v(5))$$

(c)
$$v(u(0)) + u(v(4))$$

 $v(0) + u(-1)$

Decomposition of Functions:

When we reason backward to find the functions that went into the composition, it is called decomposition.

$$g(x) = x^{2} + 1$$
 $f(x) = e^{x+1}$
 $f(x) = e^{x}$ $g(x) = x^{2}$

Ex: Let $h(x) = f(g(x)) = e^{x^2 + 1}$. Find possible formulas for f(x) and g(x). $g(x) = x^2 + 1$ $f(x) = e^{x}$ $f(x) = e^{x}$ $f(x) = x^2 + 1$ $f(x) = e^{x}$ $g(x) = x^2 + 1$ $g(x) = x^2 + 1$

Ex: Let $p(z) = \sin^2(\ln z)$. Decompose p(z) into three simpler functions by giving formulas for f(z), g(z) and h(z) where p(z) = f(g(h(z))).

$$g(z) = \sin z$$

$$f(z) = z^2$$